Exceptional points and domains of unitarity for a class of strongly non-Hermitian real-matrix Hamiltonians
نویسندگان
چکیده
A family of non-Hermitian real and tridiagonal-matrix candidates H(N)(λ)=H0(N)+λW(N)(λ) for a hiddenly Hermitian (a.k.a. quasi-Hermitian) quantum Hamiltonian is proposed studied. Fairly weak assumptions are imposed upon the unperturbed matrix [the square-well-simulating spectrum H0(N) not assumed equidistant)] its maximally N-parametric antisymmetric-matrix perturbations [matrix W(N)(λ) even required to be PT-symmetric]. Despite that, “physical” parametric domain D[N] (constructively) shown exist, guaranteeing that in interior, remains non-degenerate, rendering evolution unitary. Among degeneracies occurring at boundary ∂D[N] stability, our main attention paid their extreme version corresponding Kato’s exceptional point order N (EPN). The localization EPNs and, vicinity, quantum-phase-transition boundaries found feasible, too large N, using computer-assisted symbolic manipulations, including, particular, Gröbner-basis elimination high-precision arithmetics.
منابع مشابه
A class of spherically-separable non-Hermitian PφTφ−symmetric Hamiltonians
A family of spherical non-Hermitian potentials of the form V (r, θ, φ) = V (r) + f (θ) e/r (where r, V (r) , f (θ) ∈ R, e ∈ C) is studied. With f (θ) = 1/ sin θ, it is shown that the corresponding non-Hermitian Hamiltonians admit some “new” PφTφ−symmetry. It is observed that whilst such PφTφ−symmetric Hamiltonians just copy the eigenvalues of V (r) , the corresponding wavefunctions would rather...
متن کاملGauging non-Hermitian Hamiltonians
We address the problem of coupling non-Hermitian systems, treated as fundamental rather than effective theories, to the electromagnetic field. In such theories the observables are not the x and p appearing in the Hamiltonian, but quantities X and P constructed by means of the metric operator. Following the analogous procedure of gauging a global symmetry in Hermitian quantum mechanics we find t...
متن کاملA New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians
For a T -periodic non-Hermitian Hamiltonian H(t), we construct a class of adiabatic cyclic states of period T which are not eigenstates of the initial Hamiltonian H(0). We show that the corresponding adiabatic geometric phase angles are real and discuss their relationship with the conventional complex adiabatic geometric phase angles. We present a detailed calculation of the new adiabatic cycli...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولReal Spectra in Non-Hermitian Hamiltonians Having P T Symmetry
The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of P T symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These P T symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2021
ISSN: ['0022-2488', '1527-2427', '1089-7658']
DOI: https://doi.org/10.1063/5.0041185